Synthesis of Long Complementary DNA in the Endogenous Reaction by Equine Infectious Anemia Virus

Author:

Rice Nancy R.1,Coggins Leroy2

Affiliation:

1. Biological Carcinogenesis Program, Frederick Cancer Research Center, Frederick, Maryland 21701

2. Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853

Abstract

In the endogenous reverse transcriptase reaction, equine infectious anemia virus is able to synthesize complementary DNA (cDNA) of 8,000 nucleotides in high yield. After 2 h in 50 μM dNTP, about 2.8 μg of cDNA per mg of protein is produced, almost 30% of which is long cDNA. The system thus compares favorably with the other two well-characterized endogenous reaction systems, Moloney murine leukemia virus and avian sarcoma virus. Elongation rates of 100 to 150 nucleotides per min have been observed; these rates are comparable to those seen with purified avian myeloblastosis virus reverse transcriptase and significantly higher than those observed in vivo. In the absence of actinomycin D, equine infectious anemia virus does not require high dNTP levels for either optimal incorporation or long cDNA synthesis. The amount of long cDNA synthesized is maximal at 2 h in 50 μM dNTP; neither longer time nor higher dNTP levels (through 1.8 mM) increased this yield. Half-maximum yield in 2 h was achieved at about 15 μM dNTP, which is very similar to the published K M 's for isolated avian and murine reverse transcriptases. Total incorporation, on the other hand, continues to rise slowly through 1 mM dNTP; the half-maximum was 30 to 50 μM dNTP. In the presence of 100 μg of actinomycin D per ml, however, higher dNTP levels are required for long cDNA synthesis. We conclude that equine infectious anemia virus is exceptionally well-suited to studies of the physical organization of the retrovirus genome and to investigations of the mechanism of synthesis of the double-standard cDNA endogenous reaction product.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3