Association of Fluoroquinolone Resistance, Virulence Genes, and IncF Plasmids with Extended-Spectrum-β-Lactamase-Producing Escherichia coli Sequence Type 131 (ST131) and ST405 Clonal Groups

Author:

Matsumura Yasufumi,Yamamoto Masaki,Nagao Miki,Ito Yutaka,Takakura Shunji,Ichiyama Satoshi

Abstract

ABSTRACTThe global increase of extended-spectrum-β-lactamase (ESBL)-producingEscherichia coliis associated with the specific clonal group sequence type 131 (ST131). In order to understand the successful spread of ESBL-producingE. coliclonal groups, we characterized fluoroquinolone resistance determinants, virulence genotypes, and plasmid replicons of ST131 and another global clonal group, ST405. We investigated 41 ST131-O25b, 26 ST131-O16, 41 ST405, and 41 other ST (OST) ESBL-producing isolates, which were collected at seven acute care hospitals in Japan. The detection of ESBL types, fluoroquinolone resistance-associated mutations (including quinolone resistance-determining regions [QRDRs]), virulence genotypes, plasmid replicon types, and IncF replicon sequence types was performed using PCR and sequencing.blaCTX-M, specificallyblaCTX-M-14, was the most common ESBL gene type among the four groups. Ciprofloxacin resistance was found in 90% of ST131-O25b, 19% of ST131-O16, 100% of ST405, and 54% of OST isolates. Multidrug resistance was more common in the ST405 group than in the ST131-O25 group (56% versus 32%;P= 0.045). All ST131-O25b isolates except one had four characteristic mutations in QRDRs, but most of the isolates from the other three groups had three mutations in common. The ST131-O25b and ST405 groups had larger numbers of virulence genes than the OST group. All of the ST131-O25b and ST405 isolates and most of the ST131-O16 and OST isolates carried IncF replicons. The most prevalent IncF replicon sequence types differed between the four clonal groups. Both the ST131-O25b and ST405 clonal groups had a fluoroquinolone resistance mechanism in QRDRs, multidrug resistance, high virulence, and IncF plasmids, suggesting the potential for further global expansion and a need for measures against these clonal groups.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3