Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis

Author:

Detje Claudia N.,Lienenklaus Stefan,Chhatbar Chintan,Spanier Julia,Prajeeth Chittappen K.,Soldner Claudia,Tovey Michael G.,Schlüter Dirk,Weiss Siegfried,Stangel Martin,Kalinke Ulrich

Abstract

ABSTRACTPreviously we found that following intranasal (i.n.) infection with neurotropic vesicular stomatitis virus (VSV) type I interferon receptor (IFNAR) triggering of neuroectodermal cells was critically required to constrain intracerebral virus spread. To address whether locally active IFN-β was induced proximally, we studied spatiotemporal conditions of VSV-mediated IFN-β induction. To this end, we performed infection studies with IFN-β reporter mice. One day after intravenous (i.v.) VSV infection, luciferase induction was detected in lymph nodes. Upon i.n. infection, luciferase induction was discovered at similar sites with delayed kinetics, whereas on days 3 and 4 postinfection enhanced luciferase expression additionally was detected in the foreheads of reporter mice. A detailed analysis of cell type-specific IFN-β reporter mice revealed that within the olfactory bulb IFN-β was expressed by neuroectodermal cells, primarily by astrocytes and to a lesser extent by neurons. Importantly, locally induced type I IFN triggered distal parts of the brain as indicated by the analysis of ISRE-eGFP mice which after i.n. VSV infection showed enhanced green fluorescent protein (eGFP) expression throughout the brain. Compared to wild-type mice, IFN-β−/−mice showed increased mortality to i.n. VSV infection, whereas upon i.v. infection no such differences were detected highlighting the biological significance of intracerebrally expressed IFN-β. In conclusion, upon i.n. VSV instillation, IFN-β responses mounted by astrocytes within the olfactory bulb critically contribute to the antiviral defense by stimulating distal IFN-β-negative brain areas and thus arresting virus spread.IMPORTANCEThe central nervous system has long been considered an immune privileged site. More recently, it became evident that specialized immune mechanisms are active within the brain to control pathogens. Previously, we showed that virus, which entered the brain via the olfactory route, was arrested within the olfactory bulb by a type I IFN-dependent mechanism. Since peripheral type I IFN would not readily cross the blood-brain barrier and within the brain thus far no abundant type I IFN responses have been detected, here we addressed from where locally active IFN originated from. We found that upon intranasal VSV instillation, primarily astrocytes, and to a lesser extent neurons, were stimulated within the olfactory bulb to mount IFN-β responses that also activated and protected distal brain areas. Our results are surprising because in other infection models astrocytes have not yet been identified as major type I IFN producers.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3