Evidence for Capsule Switching between Carried and Disease-Causing Neisseria meningitidis Strains

Author:

Beddek Amanda J.12,Li Ming-Shi3,Kroll J. Simon3,Jordan T. William1,Martin Diana R.2

Affiliation:

1. Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

2. Communicable Diseases Group, Environmental Science and Research Ltd., P.O. Box 50-348, Porirua, New Zealand

3. Department of Paediatric Infectious Diseases, Imperial College London, Norfolk Place, W2 1PG, London, United Kingdom

Abstract

ABSTRACT Changing antigenic structure such as with capsule polysaccharide is a common strategy for bacterial pathogens to evade a host immune system. The recent emergence of an invasive W:2a:P1.7-2,4 sequence type 11 (ST-11) strain of Neisseria meningitidis in New Zealand, an uncommon serogroup/serotype in New Zealand disease cases, was investigated for its genetic origins. Molecular typing of 107 meningococcal isolates with similar serotyping characteristics was undertaken to determine genetic relationships. Results indicated that the W:2a:P1.7-2,4 strain had emerged via capsule switching from a group C strain (C:2a:P1.7-2,4). Neither the upstream nor downstream sites of recombination could be elucidated, but sequence analysis demonstrated that at least 45 kb of DNA was involved in the recombination, including the entire capsule gene cluster. The oatWY gene carried by the W:2a:P1.7-2,4 strain contained the insertion sequence element IS 1301 , one of five variants of oatWY found in group W135 strains belonging to the carriage-associated ST-22 clonal complex. This suggested that the origin of the capsule genes carried by the invasive W:2a:P1.7-2,4 strain is carriage associated. These results provide novel evidence for the long-standing dogma that disease-associated strains acquire antigenic structure from carriage-associated strains. Moreover, the capsule switch described here has arisen from the exchange of the entire capsule locus.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3