Characterization of Microbial Communities in Gas Industry Pipelines

Author:

Zhu Xiang Y.1,Lubeck John1,Kilbane John J.1

Affiliation:

1. Environmental Science and Technology Center, Gas Technology Institute, Des Plaines, Illinois 60018

Abstract

ABSTRACT Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans , which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales ; order III, Methanomicrobiales ; and order IV, Methanosarcinales . Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3