Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells

Author:

Rincón M1,Flavell R A1

Affiliation:

1. Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Abstract

Transcriptional factors of the NFAT family play an important role in regulating the expression of several cytokine genes during the immune response, such as the genes for interleukin 2 (IL-2) and IL-4, among others. Upon antigen stimulation, precursor CD4+ T helper (pTh) cells proliferate and differentiate into two populations of effector cells (eTh1 and eTh2), each one expressing a specific pattern of cytokines that distinguishes them from their precursors. eTh2 cells are the major source of IL-4, while gamma interferon is produced by eTh1 cells. Here we have used reporter transgenic mice to show that DNA binding and transcriptional activities of NFAT are transiently induced during the differentiation of pTh cells into either eTh1 or eTh2 cells to mediate the expression of IL-2 as a common growth factor in both pathways. However, although NFAT DNA binding is similarly induced in both eTh1 and eTh2 cells upon antigen stimulation, only the NFAT complexes present in eTh2 cells are able to mediate high-level transcription, and relatively little NFAT transcriptional activity was induced in eTh1 cells. In contrast to activated pTh cells, neither eTh1 nor eTh2 cells produced significant IL-2 upon stimulation, but the high levels of NFAT transcriptional activities directly correlate with the IL-4 production induced in response to antigen stimulation in eTh2 cells. These data suggest that activated NFAT is involved in the effector function of eTh2 cells and that the failure of eTh1 cells to produce IL-4 in response to an antigen is due, at least partially, to a failure to induce high-level transcription of the IL-4 gene by NFAT. Regulation of NFAT could be therefore a critical element in the polarization to eTh1 or eTh2.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3