Candidate Sulfonated and Sulfated Topical Microbicides: Comparison of Anti-Human Immunodeficiency Virus Activities and Mechanisms of Action

Author:

Scordi-Bello Irini A.1,Mosoian Arevik1,He Cejiang1,Chen Yiban1,Cheng Yang1,Jarvis Gary A.2,Keller Marla J.1,Hogarty Kathleen1,Waller Donald P.3,Profy Albert T.4,Herold Betsy C.5,Klotman Mary E.1

Affiliation:

1. Departments of Medicine

2. Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California

3. Department of Pharmacology, University of Illinois, Chicago, Illinois

4. Indevus Pharmaceuticals, Inc., Lexington, Massachusetts

5. Pediatrics, Mount Sinai School of Medicine, New York, New York

Abstract

ABSTRACT Poly(styrene 4-sulfonate), cellulose sulfate, polymethylenehydroquinone, and PRO 2000 are sulfated or sulfonated polymers (SPs) under development as topical microbicides. They are presumed to work through similar mechanisms of action, although to date there has been no extensive comparison of their anti-human immunodeficiency virus activities. To determine whether any of these candidate microbicides offers a potential advantage, their in vitro activities, mechanisms of action, stabilities in biological secretions, and toxicities were compared. All four compounds were found to be active against X4, R5, and dualtropic primary isolates and against X4 and R5 laboratory-adapted strains in CD4 + T cells, macrophages, and single-coreceptor cell lines. Our single-cycle experiments using pseudotyped virus suggest that all four SPs function at the binding and entry stages of the viral life cycle but differ in degree of postentry effect. Surface plasmon resonance analyses demonstrate that SPs bind to X4 and R5 monomeric glycoprotein 120 with similar high binding affinities. When mixed with cervicovaginal lavage fluid, SPs maintain inhibitory activity at concentrations achievable in formulations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3