Exceptional fusogenicity of Chinese hamster ovary cells with murine retroviruses suggests roles for cellular factor(s) and receptor clusters in the membrane fusion process

Author:

Siess D C1,Kozak S L1,Kabat D1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA.

Abstract

Chinese hamster ovary (CHO) cells are naturally resistant to infection by amphotropic and ecotropic murine retroviruses, but they become susceptible after expressing corresponding receptors rRAM-1 and mCAT-1, respectively, and they then form abundant syncytia when exposed to these viruses. The fusogenic activities of CHO cell clones increase much more strongly with levels of receptor expression than do their susceptibilities to infection, suggesting that the assembly of receptor clusters may limit syncytium formation. However, other cell lines are not fusogenic, even if they express larger amounts of receptors. Our results suggest that a factor that is relatively abundant or active in CHO cells may functionally interact with rRAM-1 and mCAT-1 in a pathway that enables receptor-bearing membranes to fuse with membranes that contain viral envelope glycoproteins. In the case of CHO/rRAM-1 cells, syncytia form at foci of amphotropic 4070A virus infection by fusion-from-within of infected with uninfected cells. This fusogenic propensity is a sole property of the uninfected CHO/rRAM-1 cells, which fuse in cocultures with any cells infected with 4070A virus. With CHO/mCAT-1 cells, fusogenicity is even greater and involves fusion-from-without by ecotropic virion particles. In contrast to infection, which behaves as expected for a process limited by ecotropic virus attachment to single receptors, fusion-from-without increases dramatically for cells that express the highest levels of mCAT-1. We propose that infection and syncytium formation are limited at distinct steps of a common pathway that requires virus binding to a single receptor, assembly of multivalent virus-receptor complexes, structural changes in viral envelope glycoproteins, and membrane fusion. The limiting step in syncytium formation is a cellular process that depends on receptor clustering and is relatively active in CHO cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference45 articles.

1. A domain of murine retrovirus surface protein gp70 mediates cell fusion, as shown in a novel SC-1 cell fusion system;Andersen K. B.;J. Virol.,1994

2. Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells;Ashorn P. A.;J. Virol.,1990

3. Bentz J. H. Ellens and D. Alford. 1993. Architecture of the influenza hemagglutinin fusion site p. 164-199. In J. Bentz (ed.) Viral fusion mechanisms. CRC Press Boca Raton Fla.

4. Physics of chemoreception;Berg H. C.;Biophys. J.,1977

5. Development of a sensitive quantitative focal assay for human immunodeficiency virus;Chesebro B.;J. Virol.,1988

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3