Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli

Author:

González-Flecha B1,Demple B1

Affiliation:

1. Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115.

Abstract

Luciferase genes are widely used as reporters of gene expression because of the high sensitivity of chemiluminescence detection and the possibility of monitoring light production in intact cells. We engineered fusions of the Escherichia coli soxS promoter to the luciferase structural genes (luxAB) from Vibrio harveyi. Since soxS transcription is positively triggered by the activated SoxR protein in response to agents such as paraquat that generate intracellular superoxide, we hoped to use this construct as a sensitive reporter of redox stress agents. Although a soxR+ soxS'::luxAB fusion exhibited a paraquat-inducible synthesis of luciferase, a smaller increase was consistently observed even in the absence of known soxRS inducers. This endogenous induction was soxR dependent and was further characterized by introducing a plasmid carrying the luciferase structural genes without the soxS promoter into a strain carrying a soxS'::lacZ fusion in the bacterial chromosome. These cells exhibited increased beta-galactosidase expression as they grew into mid-log phase. This increase was ascribed to luciferase activity because beta-galactosidase induction was suppressed (but not eliminated) when the substrate n-decanal was present in the medium. The soxS'::luxAB plasmid transformed superoxide dismutase-deficient strains very poorly under aerobic conditions but just as efficiently as a control plasmid under anaerobic conditions. The production of hydrogen peroxide, the dismutation product of superoxide anion, was significantly increased in strains carrying bacterial luciferase and maximal in the absence of n-decanal. Taken collectively, these data point to the generation of significant amounts of intracellular superoxide by bacterial luciferase, the possible mechanism of which is discussed. In addition to providing insights into the role of superoxide in the activation of the SoxR protein, these results suggest caution in the interpretation of experiments using luciferase as a reporter of gene expression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3