Sandwich Hybridization Assay for Sensitive Detection of Dynamic Changes in mRNA Transcript Levels in Crude Escherichia coli Cell Extracts in Response to Copper Ions

Author:

Thieme Daniel12,Neubauer Peter2,Nies Dietrich H.1,Grass Gregor3

Affiliation:

1. Institut für Biologie/Mikrobiologie, Martin-Luther-Universität, Halle-Wittenberg, Germany

2. Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering and Biocenter Oulu, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland

3. School of Biological Sciences, University of Nebraska, Lincoln, Nebraska

Abstract

ABSTRACT Transcript quantification techniques usually rely on purified mRNAs. We report here a solution-based sandwich hybridization assay for the quantification of mRNAs from Escherichia coli without the need of prior RNA isolation. This assay makes use of four DNA oligonucleotide probes adjacently hybridizing to target RNA in clarified cell extracts. Two helper probes facilitate the hybridization of a detection and a capture probe. The latter is biotin labeled, allowing binding to streptavidin-coated paramagnetic beads and the separation of the RNA-DNA hybrid from cellular constituents. Added antidigoxigenin Fab fragments conjugated to alkaline phosphatase bind to the digoxigenin-labeled detection probe, completing the sandwich of the paramagnetic bead, mRNA, probes, and alkaline phosphatase. The target transcript can be quantified by assessing phosphatase activity on a substrate that is converted into a fluorescent product. The amount of target mRNA is calculated from the fluorescence output and from a calibration curve for a known concentration of in vitro-synthesized target mRNA. This technique was used in time course experiments to investigate the expression of three genes responsible for the copper resistance of E. coli . The induction of gene expression by copper cations was rapid, but under aerobic conditions, the levels of expression returned to low, prestress levels within minutes. In anaerobiosis, high-level expression continued for at least 1 h. When cultures were shifted from anaerobiosis to aerobiosis, expression levels were diminished within minutes to prestress levels. The improved technique presented here is relatively simple, has very high degrees of sensitivity and robustness, is less laborious than other RNA quantification methods, and is not negatively affected by genomic DNA. These characteristics make it a powerful complementary application to genetic reporter fusions and to reverse transcription-PCR.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3