Investigating the Biological Relevance of In Vitro -Identified Putative Packaging Signals at the 5′ Terminus of Satellite Tobacco Necrosis Virus 1 Genomic RNA

Author:

Kotta-Loizou Ioly1,Peyret Hadrien2ORCID,Saunders Keith2,Coutts Robert H. A.3,Lomonossoff George P.2

Affiliation:

1. Department of Life Sciences, Imperial College London, London, United Kingdom

2. Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom

3. Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, United Kingdom

Abstract

Viruses preferentially encapsidate their own genomic RNA, sometimes as a result of the presence of clearly defined packaging signals (PSs) in their genome sequence. Recently, a novel form of short degenerate PSs has been proposed (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227–2232, 2015, https://doi.org/10.1073/pnas.1420812112 ; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255–12260, 2017, https://doi.org/10.1073/pnas.1706951114 ) using satellite tobacco necrosis virus 1 (STNV-1) as a model system for in vitro studies. It has been suggested that competing with these putative PSs may constitute a novel therapeutic approach against pathogenic single-stranded RNA viruses. Our work demonstrates that the previously identified PSs have no discernible significance for the selective packaging of STNV-1 in vivo in the presence and absence of competition or replication: viral sequences are encapsidated mostly on the basis of their abundance within the cell, while encapsidation of host RNAs also occurs. Nevertheless, the putative PSs identified in STNV-1 RNA may still have applications in bionanotechnology, such as the in vitro selective packaging of RNA molecules.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

British Society for Plant Pathology

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3