Author:
Swerdlow P S,Schuster T,Finley D
Abstract
Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献