Strand-Length Measurements of Normal and 5-Iodo-2′-Deoxyuridine-treated Vaccinia Virus Deoxyribonucleic Acid Released by the Kleinschmidt Method

Author:

McCrea J. F.1,Lipman Muriel B.1

Affiliation:

1. Department of Microbiology, Yale University School of Medicine, New Haven, Connecticut 06520

Abstract

Purified vaccinia virus, which had been grown on chick-embryo chorioallantoic membranes in the presence or in the absence of 5-iodo-2′-deoxyuridine (IUdR), was suspended in 5 m ammonium acetate and subjected to the one-step Kleinschmidt procedure on surfaces of distilled water or salt solutions. Deoxyribonucleic acid (DNA) molecules were clearly revealed, and in many instances accurate length measurements could be made. The longest continuous molecules from normal virus measured 78, 77, and 65 μ. The most frequent length was approximately 30 μ, which corresponds to only one-third to one-half of the total DNA per virus particle predicted from various chemical analyses. These data provide direct evidence that normal vaccinia DNA may occur as a linear molecule of approximately 150 × 10 6 molecular weight units, but, for reasons still unknown, the majority of these molecules appears to break into segments of equal length during release from the virion. There is no evidence for the presence of cyclic DNA. The DNA molecules are typically double-stranded. DNA from IUdR-treated vaccinia presents a markedly different picture: the molecules are mostly fragmented into small pieces, and rosettes or tangled masses equivalent to even one-quarter the length of normal molecules occur very rarely. The possibility is discussed that at least part of the virus-inhibitory effect of IUdR on vaccinia is due to extensive fragmentation of the DNA molecules into which IUdR has been incorporated in place of thymidine.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3