Dissection of Individual Functions of the Sendai Virus Phosphoprotein in Transcription

Author:

Bowman Mary Catherine1,Smallwood Sherin1,Moyer Sue A.1

Affiliation:

1. Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610

Abstract

ABSTRACT The Sendai virus P protein is an essential component of the viral RNA polymerase (P-L complex) required for RNA synthesis. To identify amino acids important for P-L binding, site-directed mutagenesis of the P gene changed 17 charged amino acids, singly or in groups, and two serines to alanine within the L binding domain from amino acids 408 to 479. Each of the 10 mutants was wild type for P-L and P-P protein interactions and for binding of the P-L complex to the nucleocapsid template, yet six showed a significant inhibition of in vitro mRNA and leader RNA synthesis. To determine if binding was instead hydrophobic in nature, five conserved hydrophobic amino acids in this region were also mutated. Each of these P mutants also retained the ability to bind to L, to itself, and to the template, but two gave a severe decrease in mRNA and leader RNA synthesis. Since all of the mutants still bound L, the data suggest that L binding occurs on a surface of P with a complex tertiary structure. Wild-type biological activity could be restored for defective polymerase complexes containing two P mutants by the addition of wild-type P protein alone, while the activity of two others could not be rescued. Gradient sedimentation analyses showed that rescue was not due to exchange of the wild-type and mutant P proteins within the P-L complex. Mutants which gave a defective RNA synthesis phenotype and could not be rescued by P establish an as-yet-unknown role for P within the polymerase complex, while the mutants which could be rescued define regions required for a P protein function independent of polymerase function.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3