Occurrence of Shewanella algae in Danish Coastal Water and Effects of Water Temperature and Culture Conditions on Its Survival

Author:

Gram Lone1,Bundvad Anemone1,Melchiorsen Jette1,Johansen Charlotte2,Fonnesbech Vogel Birte1

Affiliation:

1. Danish Institute for Fisheries Research, Department of Seafood Research, Technical University of Denmark, DK-2800 Lyngby,1 and

2. Enzyme Development, Novo Nordisk, DK-2880 Bagsværd,2 Denmark

Abstract

ABSTRACT The marine bacterium Shewanella algae , which was identified as the cause of human cases of bacteremia and ear infections in Denmark in the summers of 1994 and 1995, was detected in seawater only during the months (July, August, September, and October) when the water temperature was above 13°C. The bacterium is a typical mesophilic organism, and model experiments were conducted to elucidate the fate of the organism under cold and nutrient-limited conditions. The culturable count of S. algae decreased rapidly from 10 7 CFU/ml to 10 1 CFU/ml in approximately 1 month when cells grown at 20 to 37°C were exposed to cold (2°C) seawater. In contrast, the culturable count of cells exposed to warmer seawater (10 to 25°C) remained constant. Allowing the bacterium a transition period in seawater at 20°C before exposure to the 2°C seawater resulted in 100% survival over a period of 1 to 2 months. The cold protection offered by this transition (starvation) probably explains the ability of the organism to persist in Danish seawater despite very low (0 to 1°C) winter water temperatures. The culturable counts of samples kept at 2°C increased to 10 5 to 10 7 CFU/ml at room temperature. Most probable number analysis showed this result to be due to regrowth rather than resuscitation. It was hypothesized that S. algae would survive cold exposure better if in the biofilm state; however, culturable counts from S. algae biofilms decreased as rapidly as did counts of planktonic cells.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3