Evolution of the nucleoprotein gene of influenza A virus

Author:

Gorman O T1,Bean W J1,Kawaoka Y1,Webster R G1

Affiliation:

1. Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

Abstract

Nucleotide sequences of 24 nucleoprotein (NP) genes isolated from a wide range of hosts, geographic regions, and influenza A virus serotypes and 18 published NP gene sequences were analyzed to determine evolutionary relationships. The phylogeny of NP genes was determined by a maximum-parsimony analysis of nucleotide sequences. Phylogenetic analysis showed that NP genes have evolved into five host-specific lineages, including (i) Equine/Prague/56 (EQPR56), (ii) recent equine strains, (iii) classic swine (H1N1 swine, e.g., A/Swine/Iowa/15/30) and human strains, (iv) gull H13 viruses, and (v) avian strains (including North American, Australian, and Old World subgroups). These NP lineages match the five RNA hybridization groups identified by W. J. Bean (Virology 133:438-442, 1984). Maximum nucleotide differences among the NPs was 18.5%, but maximum amino acid differences reached only 10.8%, reflecting the conservative nature of the NP protein. Evolutionary rates varied among lineages; the human lineage showed the highest rate (2.54 nucleotide changes per year), followed by the Old World avian lineage (2.17 changes per year) and the recent equine lineage (1.22 changes per year). The per-nucleotide rates of human and avian NP gene evolution (1.62 x 10(-3) to 1.39 x 10(-3) changes per year) are lower than that reported for human NS genes (2.0 x 10(-3) changes per year; D. A. Buonagurio, S. Nakada, J. D. Parvin, M. Krystal, P. Palese, and W. M. Fitch, Science 232:980-982, 1986). Of the five NP lineages, the human lineage showed the greatest evolution at the amino acid level; over a period of 50 years, human NPs have accumulated 39 amino acid changes. In contrast, the avian lineage showed remarkable conservatism; over the same period, avian NP proteins changed by 0 to 10 amino acids. The specificity of the H13 NP in gulls and its distinct evolutionary separation from the classic avian lineage suggests that H13 NPs may have a large degree of adaptation to gulls. The presence of avian and human NPs in some swine isolates demonstrates the susceptibility of swine to different virus strains and supports the hypothesis that swine may serve as intermediates for the introduction of avian influenza virus genes into the human virus gene pool. EQPR56 is relatively distantly related to all other NP lineages, which suggests that this NP is rooted closest to the ancestor of all contemporary NPs. On the basis of estimation of evolutionary rates from nucleotide branch distances, current NP lineages are at least 100 years old, and the EQPR56 NP is much older.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3