Deoxyribonucleic Acid Replication in Simian Virus 40-Infected Cells IV. Two Different Requirements for Protein Synthesis During Simian Virus 40 Deoxyribonucleic Acid Replication

Author:

Kang H. S.1,Eshbach T. B.1,White D. A.1,Levine A. J.1

Affiliation:

1. Department of Biochemistry, Princeton University, Princeton, New Jersey 08540

Abstract

The replication of simian virus 40 (SV40) deoxyribonucleic acid (DNA) was inhibited by 99% 2 hr after the addition of cycloheximide to SV40-infected primary African green monkey kidney cells. The levels of 25 S (replicating) and 21 S (mature) SV40 DNA synthesized after cycloheximide treatment were always lower than those observed in an infected untreated control culture. This is consistent with a requirement for a protein(s) or for protein synthesis at the initiation step in SV40 DNA replication. The relative proportion of 25 S DNA as compared with 21 S viral DNA increased with increasing time after cycloheximide treatment. Removal of cycloheximide from inhibited cultures allowed the recovery of viral DNA synthesis to normal levels within 3 hr. During the recovery period, the ratio of 25 S DNA to 21 S DNA was 10 times higher than that observed after a 30-min pulse with 3 H-thymidine with an infected untreated control culture. The accumulation of 25 S replicating SV40 DNA during cycloheximide inhibition or shortly after its removal is interpreted to mean that a protein(s) or protein synthesis is required to convert the 25 S replicating DNA to 21 S mature viral DNA. Further evidence of a requirement for protein synthesis in the 25 S to 21 S conversion was obtained by comparing the rate of this conversion in growing and resting cells. The conversion of 25 S DNA to 21 S DNA took place at a faster rate in infected growing cells than in infected confluent monolayer cultures. A temperature-sensitive SV40 coat protein mutation (large-plaque SV40) had no effect on the replication of SV40 DNA at the nonpermissive temperature.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3