Affiliation:
1. Department of Microbiology, The University of Virginia School of Medicine, Charlottesville, Virginia 22901
Abstract
Methods are described for the production of vesicular stomatitis (VS) virus of sufficient purity for reliable chemical analysis. VS virions released from infected cells were concentrated and purified at least 150-fold by sequential steps of precipitation with polyethylene glycol, column chromatography, rate zonal centrifugation, and equilibrium centrifugation. The Indiana serotype (VS
Ind
virus) propagated in L-cells was found to contain 3% ribonucleic acid, 64% protein, 13% carbohydrate, and 20% lipid; the molar ratio of cholesterol to phospholipid was 0.6 or greater. Thin-layer chromatography revealed no unusual neutral lipids or phospholipids and gas-liquid chromatography revealed no unusual fatty acids incorporated into VS virions. The antigenically distinct New Jersey serotype (VS
NJ
virus) grown in L-cells showed a similar lipid profile except that the proportion of neutral lipids was larger than in VS
Ind
virus also grown in L-cells. This differences was less pronounced when the lipid composition of VS
Ind
and VS
NJ
viruses grown in chick embryo cells was compared, but VS
NJ
virus grown in either cell type always contained larger amounts of neutral lipids other than cholesterol than did VS
Ind
virus. The lipid composition of both VS
Ind
and VS
NJ
viruses grown in L-cells or chick embryo cells more closely resembled that of plasma membrane than of whole cells. A consistent finding was the relatively large amounts of phosphatidylethanolamine and sphingomyelin and the relatively small amounts of phosphatidylcholine in both VS viruses compared with uninfected whole L-cells and chick embryo cells or their plasma membranes. The methods available for isolation of plasma membranes were inadequate for conclusive comparison of the lipids of VS virions with the lipids of the plasma membranes of their host cells. Nevertheless, the data obtained are consistent with two hypotheses: (i) the lipid composition of VS viruses primarily reflects their membrane site of maturation, and (ii) the newly synthesized viral proteins inserted into cell membranes influence the proportions of phospholipids and neutral lipids selected for incorporation into the viral membrane.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献