Abstract
In Acinetobacter calcoaceticus the seven genes coding for the enzymes responsible for tryptophan synthesis map at three chromosomal locations. Two three-gene clusters, one (trpGDC) specifying the small subunit of anthranilate synthase, phosphoribosyl transferase, and indoleglycerol phosphate synthase and the other (trpFBA) specifying phosphoribosyl anthranilate isomerase and both tryptophan synthase subunits, are not linked to each other or to the trpE gene specifying the large anthranilate synthase subunit. When regulation of trp gene expression is studied in the wild type, only the level of the trpF gene product decreases upon addition of tryptophan to the medium. Tryptophan starvation of tryptophan auxotrophs, however, results in increased levels of all the tryptophan enzymes; this and additional evidence suggests that the expression of all the trp genes is subject to repression. The trpGDC genes are coordinately controlled, and the trpE gene is regulated in parallel with them. The trpFBA genes are controlled neither coordinately nor in parallel with the other trp genes, but respond proportionally when compared with each other. So far, two types of constitutive mutants have been found. The first class of mutants apparently occurs in the structural gene for a repressor protein; this repressor locus is unlinked to any of the biosynthetic trp genes and affects only the expression of trpE and the trpGDC cluster. The second class contains mutants closely linked to the trpGDC region; they overproduce only the gene products of this cluster.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献