Affiliation:
1. Marine Sciences Research Center, State University of New York, Stony Brook 11794.
Abstract
We examined freshly collected samples of the colonial planktonic cyanobacterium Trichodesmium thiebautii to determine the pathways of recently fixed N within and among trichomes. High concentrations of glutamate and glutamine were found in colonies. Glutamate and glutamine uptake rates and concentrations in cells were low in the early morning and increased in the late morning to reach maxima near midday; then uptake and concentration again fell to low values. This pattern followed that previously observed for T. thiebautii nitrogenase activity. Our results suggest that recently fixed nitrogen is incorporated into glutamine in the N2-fixing trichomes and may be passed as glutamate to non-N2-fixing trichomes. The high transport rates and concentrations of glutamate may explain the previously observed absence of appreciable uptake of NH4+, NO3-, or urea by Trichodesmium spp. Immunolocalization, Western blots (immunoblots), and enzymatic assays indicated that glutamine synthetase (GS) was present in all cells during both day and night. GS appeared to be primarily contained in cells of T. thiebautii rather than in associated bacteria or cyanobacteria. Double immunolabeling showed that cells with nitrogenase (Fe protein) contained levels of the GS protein that were twofold higher than those in cells with little or no nitrogenase. GS activity and the uptake of glutamine and glutamate dramatically decreased in the presence of the GS inhibitor methionine sulfoximine. Since no glutamate dehydrogenase activity was detected in this species, GS appears to be the primary enzyme responsible for NH3 incorporation.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献