Affiliation:
1. Department of Chemical Engineering, University of Waterloo, Ontario, Canada.
Abstract
In recent years, the white rot fungus Phanerochaete chrysosporium has shown promise as an organism suitable for the breakdown of a broad spectrum of environmental pollutants, including polynuclear aromatic hydrocarbons (PAHs). The focus of this study was to determine whether P. chrysosporium could effectively operate in an actual field sample of oil tar-contaminated soil. The soil was loaded with [14C]phenanthrene to serve as a model compound representative of the PAHs. Soil with the native flora present under static, aerobic conditions with buffering (pH 5.0 to 5.5) displayed full mineralization on the order of 20% in 21 days. The addition of P. chrysosporium was synergistic, with full mineralization on the order of 38% in 21 days. In addition to full mineralization, there was an increase in the proportion of radiolabelled polar extractives, both soluble and bound, in the presence of P. chrysosporium. From this study, it is apparent that the native soil microflora can be prompted into full mineralization of PAHs in some contaminated soils and that this mineralization can be enhanced when supplemented with the white rot fungus P. chrysosporium. With further refinement, this system may prove an effective bioremediation technology for soils contaminated with PAHs.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献