Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer

Author:

Holm P E1,Nielsen P H1,Albrechtsen H J1,Christensen T H1

Affiliation:

1. Department of Environmental Engineering, Technical University of Denmark, Lyngby.

Abstract

The bacterial abundance, distribution, and degradation potential (in terms of degradation versus lack of degradation) for four xenobiotic compounds in an aerobic aquifer sediment have been examined in laboratory and field experiments. The xenobiotic compounds studied were benzene, toluene, o-xylene, and naphthalene (all at concentrations of approximately 120 micrograms/liter). The aerobic degradation experiments ran for approximately 90 days at 10 degrees C, which corresponded to the groundwater temperature. At the end of the experiment, the major part of the microbial biomass, quantified as acridine orange direct counts, was attached to the groundwater sediment (18 x 10(6) to 25 x 10(6) cells per g [dry weight], and only a minor part was unattached in the groundwater (0.6 x 10(6) to 5.5 x 10(6) cells per ml). Experiments involving aquifer sediment suspensions showed identical degradation potentials in the laboratory and in the field. However, laboratory experiments involving only groundwater (excluding aquifer sediment) showed less degradation potential than in situ experiments involving only groundwater, indicating that the manipulation or approach of the laboratory experiments could affect the determination of the degradation potentials. No differences were observed between the groundwater-only and the sediment compartments in the in situ experiments in the ability to degrade the compounds, but the maximum degradation rates were substantially lower in the groundwater-only compartment. Preparations used in laboratory experiments for studying the degradation potential for xenobiotic organic contaminants should contain sediment to obtain the highest numbers of bacteria as well as the broadest and most stable degradation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference21 articles.

1. Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater;Aamand J.;J. Contam. Hydrol.,1989

2. Albrechtsen H.-J. Distribution of viable count of bacteria and microbial heterotrophic activity in size-fractionated aquifer sediment. Submitted for publication.

3. Microbial biomass and activity in subsurface sediment from Vejen;Albrechtsen H.;Denmark. Microb. Ecol.,1992

4. Characterization of subsurface bacteria associated with two shallow aquifers;Balkwill D. L.;Oklahoma. Appl. Environ. Microbiol.,1985

5. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer;Barker J. F.;Ground Water Monit. Rev.,1987

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3