Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus

Author:

Ng E Y1,Trucksis M1,Hooper D C1

Affiliation:

1. Infectious Disease Unit, Massachusetts General Hospital, Boston 02114-2696, USA. hoopered@al.mgh.harvard.edu

Abstract

Mutations in the flqA (formerly ofx/cfx) resistance locus of Staphylococcus aureus were previously shown to be common after first-step selections for resistance to ciprofloxacin and ofloxacin and to map on the S. aureus chromosome distinctly from gyrA, gyrB, and norA.grlA and grlB, the genes for the topoisomerase IV of S. aureus, were identified from a genomic lambda library on a common KpnI fragment, and grlB hybridized specifically with the chromosomal SmaI A fragment, which contains the flqA locus. Amplification of grlA sequences (codons 1 to 251) by PCRs from nine independent single-step flqA mutants, one multistep mutant, and the parent strain identified mutations encoding a change from Ser to Phe at position 80 in four mutants, a novel change from Ala to either Glu or Pro at position 116 in three mutants, and no change in three mutants. In the multistep mutant, another resistance locus, flqC, was mapped by transformation to the chromosomal SmaI G fragment by linkage to omega(ch::Tn551)1051 (58%) and nov (97.9%), which encodes resistance to novobiocin. This fragment contains the gyrA gene, and flqC mutants had a mutation in gyrA encoding a change from Ser to Leu at position 84, a change previously found in resistant clinical isolates. In genetic outcrosses, the flqC (gyrA) mutation expressed resistance only in flqA mutants, including those with both types of grla mutations. The silent mutant allele of gyrA was present in a flqA background and expressed resistance only upon introduction of a grlA mutation. At fourfold the MIC of ciprofloxacin, the bactericidal activity of ciprofloxacin was reduced in a grlA mutant and was abolished in gyrA grlA double mutants. These findings provide direct genetic evidence that topoisomerase IV is the primary target of current fluoroquinolones in S. aureus and that this effect may result from the greater sensitivity of topoisomerase IV relative to that of DNA gyrase to these agents. Furthermore, resistance from an altered DNA gyrase requires resistant topoisomerase IV for its expression.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3