Characterization and Quantitation of a Novel β-Lactamase Gene Found in a Wastewater Treatment Facility and the Surrounding Coastal Ecosystem

Author:

Uyaguari Miguel I.,Fichot Erin B.,Scott Geoffrey I.,Norman R. Sean

Abstract

ABSTRACTWastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ∼416 μg ml−1ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase fromStaphylococcus aureusPC1. Isolation and subcloning of this gene, referred to asblaM-1, conferred ampicillin resistance to itsEscherichia colihost. When normalized to volume, qPCR showed increased concentrations ofblaM-1during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng−1DNA increased throughout the WWTP process from influent to effluent, suggesting thatblaM-1makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 1014copies of theblaM-1gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3