Affiliation:
1. Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, 3052, Australia
Abstract
ABSTRACT
In vivo recombination has been used to make a series of AroP-PheP chimeric proteins. Analysis of their respective substrate profiles and activities has identified a small region within span III of AroP which can confer on a predominantly PheP protein the ability to transport tryptophan. Site-directed mutagenesis of the AroP-PheP chimera, PheP, and AroP has established that a key residue involved in tryptophan transport is tyrosine at position 103 in AroP. Phenylalanine is the residue at the corresponding position in PheP. The use of PheP-specific antisera has shown that the inability of certain chimeras to transport any of the aromatic amino acids is not a result of instability or a failure to be inserted into the membrane. Site-directed mutagenesis has identified two significant AroP-specific residues, alanine 107 and valine 114, which are the direct cause of loss of transport activity in chimeras such as A152P. These residues replace a glycine and an alanine in PheP and flank a highly conserved glutamate at position 110. Some suggestions are made as to the possible functions of these residues in the tertiary structure of the proteins.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献