Epsilon-Toxin Production by Clostridium perfringens Type D Strain CN3718 Is Dependent upon the agr Operon but Not the VirS/VirR Two-Component Regulatory System

Author:

Chen Jianming1,Rood Julian I.2,McClane Bruce A.12

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

2. Australian Research Council, Centre of Excellence in Structural and Functional Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia

Abstract

ABSTRACT Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. IMPORTANCE Mechanisms by which Clostridium perfringens type B and D strains regulate production of epsilon-toxin (ETX), a CDC class B select toxin, are poorly understood. Production of several other toxins expressed by C. perfringens is wholly or partially regulated by both the Agr-like quorum-sensing (QS) system and the VirS/VirR two-component regulatory system, so the present study tested whether ETX expression by type D strain CN3718 also requires these regulatory systems. The agr operon was shown to be essential for signaling CN3718 to produce ETX in broth culture or to upregulate ETX production upon close contact with enterocyte-like Caco-2 cells, which may have pathogenic relevance since ETX is produced intestinally. However, ETX production remained at wild-type levels after inactivation of the VirS/VirR system in CN3718. These findings provide the first information regarding regulation of ETX production and suggest Agr-like QS toxin production regulation in C. perfringens does not always require the VirS/VirR system.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Reference35 articles.

1. McClaneBA UzalFA MiyakawaMF LyerlyD WilkinsT . 2006. The enterotoxic clostridia, p 688–752. In DworkinM FalkowS RosenbergE SchleiferKH StackebrandtE , The prokaryotes, 3rd ed. Springer, New York, NY.

2. McClaneBA RoodJI . 2001. Clostridial toxins involved in human enteric and histotoxic infections, p 169–209. In BauhlH DurreP , Clostridia: biotechnology and medical applications. Wiley-XCH, Weinheim, Germany.

3. Epsilon-Toxin Is Required for Most Clostridium perfringens Type D Vegetative Culture Supernatants To Cause Lethality in the Mouse Intravenous Injection Model

4. Diagnosis of Clostridium Perfringens Intestinal Infections in Sheep and Goats

5. Both Epsilon-Toxin and Beta-Toxin Are Important for the Lethal Properties of Clostridium perfringens Type B Isolates in the Mouse Intravenous Injection Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3