Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids

Author:

Tran Truc T.12,Panesso Diana13,Mishra Nagendra N.4,Mileykovskaya Eugenia5,Guan Ziqianq6,Munita Jose M.17,Reyes Jinnethe13,Diaz Lorena13,Weinstock George M.8,Murray Barbara E.19,Shamoo Yousif1011,Dowhan William5,Bayer Arnold S.412,Arias Cesar A.139

Affiliation:

1. Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA

2. University of Houston, College of Pharmacy, Houston, Texas, USA

3. Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia

4. Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, USA

5. Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA

6. Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA

7. Clinica Alemana de Santiago and Universidad del Desarrollo, Santiago, Chile

8. The Genome Institute, Washington University, St. Louis, Missouri, USA

9. Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Texas, USA

10. Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA

11. Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA

12. David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA

Abstract

ABSTRACT Treatment of multidrug-resistant enterococci has become a challenging clinical problem in hospitals around the world due to the lack of reliable therapeutic options. Daptomycin (DAP), a cell membrane-targeting cationic antimicrobial lipopeptide, is the only antibiotic with in vitro bactericidal activity against vancomycin-resistant enterococci (VRE). However, the clinical use of DAP against VRE is threatened by emergence of resistance during therapy, but the mechanisms leading to DAP resistance are not fully understood. The mechanism of action of DAP involves interactions with the cell membrane in a calcium-dependent manner, mainly at the level of the bacterial septum. Previously, we demonstrated that development of DAP resistance in vancomycin-resistant Enterococcus faecalis is associated with mutations in genes encoding proteins with two main functions, (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase). In this work, we show that these VRE can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions. DAP septal diversion by DAP-resistant E. faecalis is mediated by initial redistribution of cell membrane cardiolipin-rich microdomains associated with a single amino acid deletion within the transmembrane protein LiaF (a member of a three-component regulatory system [LiaFSR] involved in cell envelope homeostasis). Full expression of DAP resistance requires additional mutations in enzymes (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase) that alter cell membrane phospholipid content. Our findings describe a novel mechanism of bacterial resistance to cationic antimicrobial peptides. IMPORTANCE The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of “repelling” the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and “traps” it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3