Subunits of the Adenosine Triphosphatase Complex Translated In Vitro from the Escherichia coli unc Operon

Author:

Downie J. Allan1,Langman Lyndall1,Cox Graeme B.1,Yanofsky Charles1,Gibson Frank1

Affiliation:

1. Biochemistry Department, John Curtin School of Medical Research, Australian National University, Canberra City, A.C.T., 2601, Australia

Abstract

The unc operon of Escherichia coli was split into two fragments by the restriction endonuclease Hin dIII. The operator-proximal portion was cloned into plasmid pACYC184, forming plasmid pAN51, which included the genes uncB, uncE , and uncA . When plasmid pAN51 was used as template in an in vitro transcription/translation system, the α subunit (from the uncA gene) and δ subunit of the F 1 adenosine triphosphatase (ATPase) were formed. In addition, three polypeptides of molecular weights 18,000, 17,000, and 14,000 were formed, and the significance of these polypeptides is discussed. The operator-distal portion of the unc operon was also cloned into plasmid pACYC184, forming plasmid pAN36, which included the uncD and uncC genes. When this plasmid was used as template in an in vitro transcription/translation system, the β subunit (from the uncD gene) and the ε subunit (from the uncC gene) of the F 1 ATPase were formed. A polypeptide of a molecular weight similar to the ε subunit but of different net charge was also formed. Plasmid pAN45, carrying the complete unc operon, was isolated after digestion of a mixture of plasmids pAN51 and pAN36 with the restriction endonuclease Hin dIII and then religation with T4 deoxyribonucleic acid ligase. It was concluded that a Hin dIII restriction site occurred within the newly described uncG gene, which was shown, by complementation studies with Mu-induced mutants, to be located between the uncA and uncD genes to give the gene order uncBEAGDC . The uncG gene appears to code for the γ subunit of the F 1 ATPase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3