A 7-Deaza-Adenosine Analog Is a Potent and Selective Inhibitor of Hepatitis C Virus Replication with Excellent Pharmacokinetic Properties

Author:

Olsen David B.1,Eldrup Anne B.2,Bartholomew Linda3,Bhat Balkrishen2,Bosserman Michele R.1,Ceccacci Alessandra3,Colwell Lawrence F.4,Fay John F.1,Flores Osvaldo A.1,Getty Krista L.1,Grobler Jay A.1,LaFemina Robert L.1,Markel Eric J.1,Migliaccio Giovanni3,Prhavc Marija2,Stahlhut Mark W.1,Tomassini Joanne E.1,MacCoss Malcolm4,Hazuda Daria J.1,Carroll Steven S.1

Affiliation:

1. Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsylvania

2. Department of Medicinal Chemistry, Isis Pharmaceuticals, Carlsbad, California

3. Department of Biochemistry, Istituto di Ricerche di Biologia Molecolare P. Angeletti, Pomezia, Italy

4. Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, New Jersey

Abstract

ABSTRACT Improved treatments for chronic hepatitis C virus (HCV) infection are needed due to the suboptimal response rates and deleterious side effects associated with current treatment options. The triphosphates of 2′- C -methyl-adenosine and 2′- C -methyl-guanosine were previously shown to be potent inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of viral RNA in cells. Here we demonstrate that the inclusion of a 7-deaza modification in a series of purine nucleoside triphosphates results in an increase in inhibitory potency against the HCV RdRp and improved pharmacokinetic properties. Notably, incorporation of the 7-deaza modification into 2′- C -methyl-adenosine results in an inhibitor with a 20-fold-increased potency as the 5′-triphosphate in HCV RdRp assays while maintaining the inhibitory potency of the nucleoside in the bicistronic HCV replicon and with reduced cellular toxicity. In contrast, while 7-deaza-2′- C -methyl-GTP also displays enhanced inhibitory potency in enzyme assays, due to poor cellular penetration and/or metabolism, the nucleoside does not inhibit replication of a bicistronic HCV replicon in cell culture. 7-Deaza-2′- C -methyl-adenosine displays promising in vivo pharmacokinetics in three animal species, as well as an acute oral lethal dose in excess of 2,000 mg/kg of body weight in mice. Taken together, these data demonstrate that 7-deaza-2′- C -methyl-adenosine is an attractive candidate for further investigation as a potential treatment for HCV infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3