In Vitro Inhibition of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Reductase MabA by Isoniazid

Author:

Ducasse-Cabanot Stéphanie1,Cohen-Gonsaud Martin23,Marrakchi Hedia1,Nguyen Michel4,Zerbib Didier1,Bernadou Jean4,Daffé Mamadou1,Labesse Gilles2,Quémard Annaíik1

Affiliation:

1. Institut de Pharmacologie et de Biologie Structurale, Département des Mécanismes Moléculaires des Infections Mycobactériennes

2. Centre de Biochimie Structurale, INSERM-CNRS, Montpellier

3. Bio-Xtal, Gif sur Yvette, France

4. Laboratoire de Chimie Coordination, CNRS, Toulouse

Abstract

ABSTRACT The first-line specific antituberculous drug isoniazid inhibits the fatty acid elongation system (FAS) FAS-II involved in the biosynthesis of mycolic acids, which are major lipids of the mycobacterial envelope. The MabA protein that catalyzes the second step of the FAS-II elongation cycle is structurally and functionally related to the in vivo target of isoniazid, InhA, an NADH-dependent enoyl-acyl carrier protein reductase. The present work shows that the NADPH-dependent β-ketoacyl reduction activity of MabA is efficiently inhibited by isoniazid in vitro by a mechanism similar to that by which isoniazid inhibits InhA activity. It involves the formation of a covalent adduct between Mn III -activated isoniazid and the MabA cofactor. Liquid chromatography-mass spectrometry analyses revealed that the isonicotinoyl-NADP adduct has multiple chemical forms in dynamic equilibrium. Both kinetic experiments with isolated forms and purification of the enzyme-ligand complex strongly suggested that the molecules active against MabA activity are the oxidized derivative and a major cyclic form. Spectrofluorimetry showed that the adduct binds to the MabA active site. Modeling of the MabA-adduct complex predicted an interaction between the isonicotinoyl moiety of the inhibitor and Tyr185. This hypothesis was supported by the fact that a higher 50% inhibitory concentration of the adduct was measured for MabA Y185L than for the wild-type enzyme, while both proteins presented similar affinities for NADP + . The crystal structure of MabA Y185L that was solved showed that the substitution of Tyr185 induced no significant conformational change. The description of the first inhibitor of the β-ketoacyl reduction step of fatty acid biosynthesis should help in the design of new antituberculous drugs efficient against multidrug-resistant tubercle bacilli.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3