Posaconazole Is a Potent Inhibitor of Sterol 14α-Demethylation in Yeasts and Molds

Author:

Munayyer Hanan K.1,Mann Paul A.1,Chau Andrew S.1,Yarosh-Tomaine Taisa1,Greene Jonathan R.1,Hare Roberta S.1,Heimark Larry1,Palermo Robert E.1,Loebenberg David1,McNicholas Paul M.1

Affiliation:

1. Schering-Plough Research Institute, Kenilworth, New Jersey

Abstract

ABSTRACT Posaconazole (POS; SCH 56592) is a novel triazole that is active against a wide variety of fungi, including fluconazole-resistant Candida albicans isolates and fungi that are inherently less susceptible to approved azoles, such as Candida glabrata . In this study, we compared the effects of POS, itraconazole (ITZ), fluconazole (FLZ), and voriconazole (VOR) on sterol biosynthesis in strains of C. albicans (both azole-sensitive and azole-resistant strains), C. glabrata , Aspergillus fumigatus , and Aspergillus flavus . Following exposure to azoles, nonsaponifiable sterols were extracted and resolved by liquid chromatography and sterol identity was confirmed by mass spectroscopy. Ergosterol was the major sterol in all but one of the strains; C. glabrata strain C110 synthesized an unusual sterol in place of ergosterol. Exposure to POS led to a decrease in the total sterol content of all the strains tested. The decrease was accompanied by the accumulation of 14α-methylated sterols, supporting the contention that POS inhibits the cytochrome P450 14α-demethylase enzyme. The degree of sterol inhibition was dependent on both dose and the susceptibility of the strain tested. POS retained activity against C. albicans isolates with mutated forms of the 14α-demethylase that rendered these strains resistant to FLZ, ITZ, and VOR. In addition, POS was a more potent inhibitor of sterol synthesis in A. fumigatus and A. flavus than either ITZ or VOR.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3