Regions and Activities of Simian Virus 40 T Antigen That Cooperate with an Activated ras Oncogene in Transforming Primary Rat Embryo Fibroblasts

Author:

Beachy Tina M.1,Cole Sara L.1,Cavender Jane F.2,Tevethia Mary J.1

Affiliation:

1. Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033

2. Department of Biology, Elizabethtown College, Elizabethtown, Pennsylvania 17022

Abstract

ABSTRACT Prolonged expression of a ras oncogene in primary cells accelerates the natural process of senescence. This ras -induced permanent growth arrest is bypassed in cells expressing the simian virus 40 large T antigen. Previously we showed that two regions of T antigen, a region consisting of the N-terminal 147 amino acids and a region consisting of amino acids 251 to 708 (T251-708), independently overcome ras -induced senescence. Coexpression of either T-antigen fragment and Ras results in the appearance of dense foci of transformed cells. Using a series of mutants that produce shorter T-antigen fragments, we show that the C-terminal limit of the N-terminal T-antigen fragment that cooperates with Ras lies between amino acids 83 and 121. The N-terminal limit of the C-terminal T-antigen fragment lies between amino acids 252 and 271. In addition, we present evidence that cooperation between the N-terminal fragment and Ras depends upon an intact T-antigen J domain and the ability of the T antigen to bind and inactivate the growth-suppressive effect of the tumor suppressor Rb. Introduction of specific amino acid substitutions surrounding residue 400 into T251-708 prevented the fragment from cooperating with Ras. T251-708 proteins with these same substitutions inhibited the transcriptional transactivating potential of p53 as effectively as did the wild-type protein. Thus, at least one activity contained within T251-708, other than inactivating p53 as a transcriptional transactivator, is likely to be required to bypass Ras-induced senescence.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3