Affiliation:
1. Water Studies Centre, Department of Chemistry, Monash University, 900 Dandenong Road, Caulfield East, Victoria, Australia 3145
Abstract
Studies in microbial ecology require accurate measures of cell number and biomass. Although epifluorescence microscopy is an accepted and dependable method for determining cell numbers, current methods of converting biovolume to biomass are error prone, tedious, and labor-intensive. This paper describes a technique with sedimentation field-flow fractionation to enumerate bacteria and determine their density, size, and mass. Using cultured cells of different shapes and sizes, we determined optimum values for separation run parameters and sample-handling procedures. The technique described can separate and detect 4′, 6-diamidino-2-phenylindole-stained cells and generate a fractogram from which cell numbers and their size or mass distribution can be calculated. A direct method for estimating bacterial biomass (dry organic matter content) which offers distinct advantages over present methods for calculating biomass has been developed.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献