Antibody-Guided Alpha Radiation Effectively Damages Fungal Biofilms

Author:

Martinez L. R.1,Bryan R. A.2,Apostolidis C.3,Morgenstern A.3,Casadevall A.14,Dadachova E.12

Affiliation:

1. Departments of Microbiology and Immunology

2. Nuclear Medicine

3. European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany

4. Medicine, Albert Einstein College of Medicine, Bronx, New York

Abstract

ABSTRACT The use of indwelling medical devices—pacemakers, prosthetic joints, catheters—is rapidly growing and is often complicated by infections with biofilm-forming microbes that are resistant to antimicrobial agents and host defense mechanisms. We investigated for the first time the use of microbe-specific monoclonal antibodies (MAbs) as delivery vehicles for targeting biofilms with cytocidal radiation. MAb 18B7 (immunoglobulin G1 [IgG1]), which binds to capsular polysaccharides of the human pathogenic fungus Cryptococcus neoformans , penetrated cryptococcal biofilms, as shown by confocal microscopy. When the alpha radiation-emitter 213-Bismuth ( 213 Bi) was attached to MAb 18B7 and the radiolabeled MAb was added to C. neoformans biofilms, there was a 50% reduction in biofilm metabolic activity. In contrast, when the IgM MAb 13F1 labeled with 213 Bi was used there was no penetration of the fungal biofilm and no damage. Unlabeled 18B7, 213 Bi-labeled nonspecific MAbs, and gamma and beta types of radiation did not have an effect on biofilms. The lack of efficacy of gamma and beta radiation probably reflects the radioprotective properties of polysaccharide biofilm matrix. Our results indicate that C. neoformans biofilms are susceptible to treatment with antibody-targeted alpha radiation, suggesting a novel option for the prevention or treatment of microbial biofilms on indwelling medical devices.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3