Susceptibility of Cryptococcus neoformans to Photodynamic Inactivation Is Associated with Cell Wall Integrity

Author:

Fuchs Beth Burgwyn1,Tegos George P.23,Hamblin Michael R.234,Mylonakis Eleftherios1

Affiliation:

1. Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts

2. Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts

3. Department of Dermatology, Harvard Medical School, Boston, Massachusetts

4. Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts

Abstract

ABSTRACT Photodynamic therapy is a rapidly developing antimicrobial technology which combines a nontoxic photoactivatable dye or photosensitizer with harmless visible light of the correct wavelength to excite the dye to its reactive triplet state to generate reactive oxygen species toxic to cells. In this report we present evidence that the fungal pathogen Cryptococcus neoformans is susceptible to photodynamic inactivation by use of a polycationic conjugate of polyethyleneimine and the photosensitizer chlorin(e6). A C. neoformans rom2 mutant, with a mutation involving a putative Rho1 guanyl nucleotide exchange factor that is part of the protein kinase C-cell wall integrity pathway, demonstrated a compromised cell wall and less (1,3)β- d glucan than the wild-type strain and increased accumulation of PEI-ce6 as assessed by fluorescence uptake and confocal microscopy. Interestingly, C. neoformans rom2 was hypersusceptible to photodynamic inactivation and coincubation of wild-type C. neoformans strain KN99α with caspofungin-enhanced photoinactivation. These studies demonstrated that C. neoformans is sensitive to photodynamic therapy and illustrated the significance of cell wall integrity in microbial susceptibility to antimicrobial photodynamic inactivation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3