Binding of human plasminogen to Borrelia burgdorferi

Author:

Hu L T1,Perides G1,Noring R1,Klempner M S1

Affiliation:

1. Division of Geographic Medicine and Infectious Diseases, Tufts University School of Medicine, New England Medical Center, Boston, Massachusetts 02111, USA.

Abstract

We studied the binding of plasminogen to Borrelia burgdorferi, a spirochete which causes Lyme disease and produces no endogenous proteases which digest extracellular matrix proteins. Using 125I-labeled plasminogen, we demonstrated that B. burgdorferi bound human plasminogen and that this binding was inhibitable with unlabeled plasminogen. 125I-labeled plasminogen binding by B. burgdorferi was also inhibited by the lysine analog epsilon-aminocaproic acid. There was no significant difference in the binding of Glu- or Lys-plasminogen to B. burgdorferi. Binding of plasminogen was similar in low-passage (infectious) and high-passage (noninfectious) isolates of B. burgdorferi. Plasminogen bound to the surface of B. burgdorferi could be converted into plasmin by a human urokinase-type plasminogen activator. 125I-labeled plasminogen ligand blots of borrelial membrane proteins demonstrated two prominent binding proteins at approximately 70 and approximately 30 kDa. By Western blot (immunoblot), the 30-kDa protein was found to be outer surface protein A (Osp A) of B. burgdorferi. 125I-labeled plasminogen binding to both the 70-kDa protein and Osp A was inhibited by approximately 90% with a 1,000-fold excess of unlabeled plasminogen. By scanning densitometry, the 70-kDa band bound > 10 time more 125I-labeled plasminogen than did Osp A. An Osp A-deficient mutant of B. burgdorferi and wild-type B. burgdorferi bound equal amounts of 125I-labeled plasminogen. Ligand blots of membrane proteins from an Osp A-deficient mutant showed association of 125I-labeled plasminogen at only the 70-kDa protein. Two-dimensional gel electrophoresis showed that the 70-kDa protein had a pI of approximately 5.3, clearly separable from Osp A. The association of host plasmin(ogen) with borrelial surface proteins provides a mechanism by which B. burgdorferi can digest extracellular matrix and disseminate.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference27 articles.

1. Alexander C. M. and Z. Werb. 1991. Extracellular matrix degradation p. 255-302. In E. D. Hay (ed.) Cell biology of extracellular matrix. Plenum Press New York.

2. Isolation and cultivation of Lyme disease spirochetes;Barbour A.;Yale J. Biol. Med.,1984

3. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes;Berge A.;J. Biol. Chem.,1993

4. Cultivation of Borrelia burgdorferi from erythema migrans lesions and perilesional skin;Berger B. W.;J. Clin. Microbiol.,1992

5. Isolation of a prokaryotic plasmin receptor;Broder C.;J. Biol. Chem.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3