Signal transduction responses following adhesion of verocytotoxin-producing Escherichia coli

Author:

Ismaili A1,Philpott D J1,Dytoc M T1,Sherman P M1

Affiliation:

1. Division of Gastroenterology, Hospital for Sick Children, Toronto, Ontario, Canada.

Abstract

Attaching and effacing adhesion to epithelial cells is a pathognomonic feature of infection by both enteropathogenic Escherichia coli (EPEC) and certain strains of verocytotoxin-producing E. coli (VTEC). EPEC adhesion to tissue culture epithelial cells results in activation of the phosphatidylinositol pathway, with elevated levels of inositol 1,4,5-triphosphate and cytosolic free calcium. In this report, we show that VTEC also activate this signal transduction pathway in infected epithelial cells. Specifically, increased levels of inositol 1,4,5-triphosphate and intracellular free calcium were observed in HEp-2 cells infected with VTEC of serotype O157:H7. VTEC of serotypes O157:H7 and O113:H21 also induced increases in intracellular calcium levels in the human intestinal crypt-like cell line T84, even with minimal or no attaching and effacing activity as monitored by transmission electron microscopy. In contrast to EPEC, VTEC failed to induce tyrosine phosphorylation of epithelial cell proteins in HEp-2 and T84 cells, as determined by indirect immunofluorescence microscopy. These findings suggest that signal transduction responses to VTEC, including elevated levels of inositol triphosphates and intracellular free calcium, are independent of formation of the attaching and effacing lesion. Our findings also show that VTEC pathogenesis may involve signal transduction pathways that are distinct from those induced by EPEC infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Myriad Ways Enteropathogenic Escherichia coli (EPEC) Alters Tight Junctions;Tight Junctions;2022

2. Glycotherapeutics and Verotoxin;Comprehensive Glycoscience;2021

3. The Benefit of a Plant-Based Cattle Vaccine for Reducing Enterohemorrhagic Escherichia Coli Shedding and Improving Food Safety;Prospects of Plant-Based Vaccines in Veterinary Medicine;2018

4. Enterohemorrhagic Escherichia coli Adhesins;Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli;2015-05-26

5. Enterohemorrhagic Escherichia coli Colonization of Human Colonic EpitheliumIn VitroandEx Vivo;Infection and Immunity;2014-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3