Recombinant human cachectin/tumor necrosis factor but not interleukin-1 alpha downregulates lipoprotein lipase gene expression at the transcriptional level in mouse 3T3-L1 adipocytes.

Author:

Zechner R,Newman T C,Sherry B,Cerami A,Breslow J L

Abstract

Lipoprotein lipase (LPL) is synthesized primarily in muscle and adipose tissue and by hydrolyzing triglycerides in chylomicrons and very low density lipoprotein allows uptake of the resultant free fatty acids by these tissues. This report describes the cloning of the mouse LPL gene from which probes were derived to study the regulation of LPL synthesis in the 3T3-L1 adipocyte cell culture system. Preconfluent 3T3-L1 preadipocytes had very small amounts of LPL mRNA (less than 1 pg/micrograms of RNA). At confluency, LPL mRNA levels increased to 5 to 15 pg/micrograms of RNA. After insulin and dexamethasone were added, LPL activity and mRNA levels rose in parallel. Peak mRNA levels were reached within 4 to 10 days, achieving LPL mRNA concentrations of 150 to 500 pg/micrograms of RNA. This represents a 15- to 50-fold increase over confluent cells. Two cytokines known to diminish adipose tissue LPL activity were studied to see how their effects were regulated. Recombinant human cachectin/tumor necrosis factor diminished both LPL activity and LPL mRNA levels. The effect on LPL activity compared with mRNA levels was quicker, at a lower dose, and more complete (95 versus 75% maximum effect). The effect of recombinant human cachectin tumor necrosis factor on LPL mRNA levels was shown by nuclear run-on experiments to be exerted transcriptionally. It was also independent of new protein synthesis. Recombinant human interleukin-1 alpha diminished only LPL activity but not mRNA levels. This study suggests that during times of stress, cytokines secreted by activated macrophages can alter energy balance by affecting transcriptional and posttranscriptional processes in adipocytes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3