A Novel DNA-Binding Protein, PhaR, Plays a Central Role in the Regulation of Polyhydroxyalkanoate Accumulation and Granule Formation in the Haloarchaeon Haloferax mediterranei

Author:

Cai Shuangfeng,Cai Lei,Zhao Dahe,Liu Guiming,Han Jing,Zhou Jian,Xiang Hua

Abstract

ABSTRACTPolyhydroxyalkanoates (PHAs) are synthesized and assembled as PHA granules that undergo well-regulated formation in many microorganisms. However, this regulation remains unclear in haloarchaea. In this study, we identified a PHA granule-associated regulator (PhaR) that negatively regulates the expression of both its own gene and the granule structural genephaPin the same operon (phaRP) inHaloferax mediterranei. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays demonstrated a significant interaction between PhaR and thephaRPpromoterin vivo. Scanning mutagenesis of thephaRPpromoter revealed a specificcis-element as the possible binding position of the PhaR. The haloarchaeal homologs of the PhaR contain a novel conserved domain that belongs to a swapped-hairpin barrel fold family found in AbrB-like proteins. Amino acid substitution indicated that this AbrB-like domain is critical for the repression activity of PhaR. In addition, thephaRPpromoter had a weaker activity in the PHA-negative strains, implying a function of the PHA granules in titration of the PhaR. Moreover, theH. mediterraneistrain lackingphaRwas deficient in PHA accumulation and produced granules with irregular shapes. Interestingly, the PhaR itself can promote PHA synthesis and granule formation in a PhaP-independent manner. Collectively, our results demonstrated that the haloarchaeal PhaR is a novel bifunctional protein that plays the central role in the regulation of PHA accumulation and granule formation inH. mediterranei.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3