Improvement of Multiple-Stress Tolerance and Lactic Acid Production in Lactococcus lactis NZ9000 under Conditions of Thermal Stress by Heterologous Expression of Escherichia coli dnaK

Author:

Abdullah-Al-Mahin 1,Sugimoto Shinya123,Higashi Chihana1,Matsumoto Shunsuke14,Sonomoto Kenji12

Affiliation:

1. Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

2. Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

3. Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan

4. Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan

Abstract

ABSTRACT The effects of nisin-induced dnaK expression in Lactococcus lactis were examined, and this expression was shown to improve stress tolerance and lactic acid fermentation efficiency. Using a nisin-inducible expression system, DnaK proteins from L. lactis (DnaK Lla ) and Escherichia coli (DnaK Eco ) were produced in L. lactis NZ9000. In comparison to a strain harboring the empty vector pNZ8048 (designated NZ-Vector) and one expressing dnaK Lla (designated NZ-LDnaK), the dnaK Eco -expressing strain, named NZ-EDnaK, exhibited more tolerance to heat stress at 40°C in GM17 liquid medium. The cell viability of NZ-Vector was reduced 4.6-fold after 6 h of heat treatment. However, NZ-EDnaK showed 13.5-fold increased viability under these conditions, with a very low concentration of DnaK Eco production. Although the heterologous expression of dnaK Eco did not effect DnaK Lla production, heat treatment increased the DnaK Lla level 3.5- and 3.6-fold in NZ-Vector and NZ-EDnaK, respectively. Moreover, NZ-EDnaK showed tolerance to multiple stresses, including 3% NaCl, 5% ethanol, and 0.5% lactic acid (pH 5.47). In CMG medium, the lactate yield and the maximum lactate productivity of NZ-EDnaK were higher than the corresponding values for NZ-Vector at 30°C. Interestingly, at 40°C, these values of NZ-EDnaK were not significantly different from the corresponding values for the control strain at 30°C. Lactate dehydrogenase (LDH) activity was also found to be stable at 40°C in the presence of DnaK Eco . These findings suggest that the heterologous expression of dnaK Eco enhances the quality control of proteins and enzymes, resulting in improved growth and lactic acid fermentation at high temperature.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3