Overlapping Motifs (PTAP and PPEY) within the Ebola Virus VP40 Protein Function Independently as Late Budding Domains: Involvement of Host Proteins TSG101 and VPS-4

Author:

Licata Jillian M.1,Simpson-Holley Martha1,Wright Nathan T.1,Han Ziying1,Paragas Jason2,Harty Ronald N.1

Affiliation:

1. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6049

2. Virology Division, U.S. Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland 21702-5011

Abstract

ABSTRACT The VP40 protein of Ebola virus can bud from mammalian cells in the form of lipid-bound, virus-like particles (VLPs), and late budding domains (L-domains) are conserved motifs (PTAP, PPxY, or YxxL; where “x” is any amino acid) that facilitate the budding of VP40-containing VLPs. VP40 is unique in that potential overlapping L-domains with the sequences PTAP and PPEY are present at amino acids 7 to 13 of VP40 (PTAPPEY). L-domains are thought to function by interacting with specific cellular proteins, such as the ubiquitin ligase Nedd4, and a component of the vacuolar protein sorting (vps) pathway, tsg101. Mutational analysis of the PTAPPEY sequence of VP40 was performed to understand further the contribution of each individual motif in promoting VP40 budding. In addition, the contribution of tsg101 and a second member of the vps pathway, vps4, in facilitating budding was addressed. Our results indicate that (i) both the PTAP and PPEY motifs contribute to efficient budding of VP40-containing VLPs; (ii) PTAP and PPEY can function as L-domains when separated and moved from the N terminus (amino acid position 7) to the C terminus (amino acid position 316) of full-length VP40; (iii) A VP40-PTAP/tsg101 interaction recruits tsg101 into budding VLPs; (iv) a VP40-PTAP/tsg101 interaction recruits VP40 into lipid raft microdomains; and (v) a dominant-negative mutant of vps4 (E228Q), but not wild-type vps4, significantly inhibited the budding of Ebola virus (Zaire). These results provide important insights into the complex interplay between viral and host proteins during the late stages of Ebola virus budding.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3