Vigorous Innate and Virus-Specific Cytotoxic T-Lymphocyte Responses to Murine Cytomegalovirus in the Submaxillary Salivary Gland

Author:

Cavanaugh Victoria J.1,Deng Yuping2,Birkenbach Mark P.3,Slater Jacquelyn S.1,Campbell Ann E.1

Affiliation:

1. Department of Microbiology and Molecular Cell Biology, Glennan Center for Geriatrics and Gerontology

2. Department of Internal Medicine

3. Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23501

Abstract

ABSTRACT To better understand the immunological mechanisms that permit prolonged shedding of murine cytomegalovirus (MCMV) from the salivary gland, the phenotypic and functional characteristics of leukocytes infiltrating the submaxillary gland (SMG) were analyzed in infected BALB/c mice. A robust innate immune response, comprised of CD11c + major histocompatibility complex class II + CD11b CD8α + dendritic cells and γ/δ T-cell receptor-bearing CD3 + T cells was prominent through at least 28 days postinfection. Concurrently, a dramatic increase in pan-NK (DX5 + ) CD3 + and CD8 + T cells was observed, while CD4 + T cells, known to be essential for viral clearance from this tissue, increased slightly. The expression particularly of gamma interferon but also of interleukin-10 and CC chemokines was extraordinarily high in the SMG in response to MCMV infection. The gamma interferon was produced primarily by CD4 + and CD8 + T lymphocytes and DX5 + CD3 + T cells. The SMG CD8 + T cells were highly cytolytic ex vivo, and a significant proportion of these cells were specific to an immunodominant MCMV peptide. These peptide-specific clones were not exhausted by the presence of high virus titers, which persisted in the SMG despite the strength of the cell-mediated responses. In contrast, MCMV replication was efficiently cleared from the draining cervical and periglandular lymph nodes, a tissue displaying a substantially weaker antiviral response. Our data indicated that vigorous innate and acquired immune responses are elicited, activated, and retained in response to mucosal inflammation from persistent MCMV infection of the submaxillary gland.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3