Prevention of surface-to-human transmission of rotaviruses by treatment with disinfectant spray

Author:

Ward R L1,Bernstein D I1,Knowlton D R1,Sherwood J R1,Young E C1,Cusack T M1,Rubino J R1,Schiff G M1

Affiliation:

1. Division of Clinical Virology, James N. Gamble Institute of Medical Research, Cincinnati, Ohio 45219.

Abstract

A model was developed to examine the effects of disinfectants on the transmission of infectious rotavirus from a dried surface to humans. The initial experiments were designed to find a method of preserving rotavirus infectivity during drying. Culture-adapted human rotavirus (CJN strain) was dried at room temperature in different organic suspensions, including fecal matter, several laboratory media, and nonfat dry milk (NDM). Recoveries of infectious virus were then compared. Fecal matter provided little protection in this study relative to distilled water, but the other suspensions were quite protective, especially NDM, which consistently allowed recoveries of greater than 50%. When 10(3) focus-forming units of unpassaged CJN virus were dried in NDM and administered to subjects who licked the dried material, 100% (8 of 8) became infected. The effect of Lysol brand disinfectant spray (LDS) was next examined. Although NDM provided some protection against inactivation by LDS, spraying under conditions recommended by the manufacturer consistently caused the CJN virus titer to decrease greater than 5 log10. Consumption of CJN virus (10(3) focus-forming units) sprayed with LDS caused no infection in 14 subjects, whereas 13 of 14 subjects who consumed the unsprayed virus became infected (P less than 0.00001). The methods developed in this study could be used to test the effects of other disinfectants on the spread of infectious rotavirus from inanimate surfaces to humans.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3