Thermoregulation of virB transcription in Shigella flexneri by sensing of changes in local DNA superhelicity

Author:

Tobe T1,Yoshikawa M1,Sasakawa C1

Affiliation:

1. Department of Bacteriology, Institute of Medical Science, University of Tokyo, Japan.

Abstract

Transcription of the virB gene, a transcriptional regulator of invasion genes on the large plasmid of Shigella flexneri, is strictly regulated by growth temperature; when bacteria are grown at 37 degrees C, virB transcription is highly activated, while at 30 degrees C the level of virB transcription decreases to less than 5% of that at 37 degrees C. Transcription from the virB promoter is activated by VirF, which is encoded on the same plasmid, in a DNA superhelicity-dependent manner (T. Tobe, M. Yoshikawa, T. Mizuno, and C. Sasakawa, J. Bacteriol. 175:6142-6149, 1993). Here we provide evidence supporting the involvement of negative superhelicity in the thermoregulation of virB transcription. A local negatively supercoiled domain in the virB promoter region was created by activating a divergent transcription from the T7 RNA polymerase-dependent promoter, phi 10, which was placed upstream of the virB promoter in the opposite orientation. Transcription from the virB promoter was activated even at 30 degrees C by induction of divergent transcription. Levels of virB transcription correlated with levels of expressed T7 RNA polymerase. Transcriptional activation of virB by the system depended completely upon VirF function. The level of virB transcription achieved by introducing a negatively supercoiled domain was enough to give rise to expression of invasion capacity at 30 degrees C. These results indicated that the repression of virB transcription at 30 degrees C was caused by a reduction in negative superhelicity around the virB promoter region at 30 degrees C.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3