Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability

Author:

Rech S1,Deppenmeier U1,Gunsalus R P1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

Abstract

The mod (chlD) locus at 17 min on the Escherichia coli chromosome encodes a high-affinity molybdate uptake system. To further investigate the structure and regulation of these genes, the DNA region upstream of the previously identified modBC (chlJD) genes was cloned and sequenced. A single open reading frame, designated modA, was identified and appears to encode a periplasmic binding protein for the molybdate uptake system. To determine how the mod genes are regulated in response to molybdate, nitrate, and oxygen, we constructed a series of mod-lacZ operon fusions to the upstream region and introduced them in single copy onto the E. coli chromosome. Whereas molybdate limitation resulted in elevated mod-lacZ expression, neither oxygen nor nitrate had any significant effect on gene expression. A regulatory motif, CATAA, located at the modA promoter was identified and shown to be required for molybdate-dependent control of the modABCD operon. Mutations within this sequence resulted in nearly complete derepression of gene expression and suggest that transcription of the operon is mediated by a molybdenum-responsive regulatory protein.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3