ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9

Author:

Bartlett D H1,Welch T J1

Affiliation:

1. Center for Marine Biomedicine and Biotechnology, Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92093-0202.

Abstract

Photobacterium species strain SS9 is a moderately barophilic (pressure-loving) deep-sea bacterial species which induces the expression of the ompH gene in response to elevated pressure. Here we demonstrate that at 1 atm (1 atm = 1.01325 x 10(5) Pa), ompH expression increases with cell density in 2216 marine medium batch culture and is subject to catabolite repression and the OmpH synthesis is inducible by energy (carbon) starvation. Regulatory mutants which are impaired in ompH gene expression at high pressure are also impaired in cell density regulation of ompH gene expression, indicating that the two inducing conditions overlap in their signal transduction pathways. The same promoter was activated by high cell density at 1 atm of pressure as well as during low-cell-density growth at 272 atm. Catabolite repression of ompH gene expression was induced by a variety of carbon sources, and this repression could be partially reversed in most cases by the addition of cyclic AMP (cAMP). Surprisingly, glucose repression of ompH transcription occurred only at 1 atm, not at 272 atm, despite the fact that catabolite repression was operational in SS9 under both conditions. It is suggested that ompH expression is cAMP and catabolite repressor protein dependent at 1 atm but becomes cAMP and perhaps catabolite repressor protein independent at 272 atm. Possible mechanisms of ompH gene activation are discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference62 articles.

1. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an E. coli morphogene;Aldea M.;EMBO J.,1989

2. Resolution of bacterial proteins by polyacrylamide electrophoresis on slabs;Ames G. F.;J. Biol. Chem.,1974

3. Isolation of a gene regulated by hydrostatic pressure;Bartlett D.;Nature (London),1989

4. Pressure sensing in deep-sea bacteria;Bartlett D. H.;Res. Microbiol.,1991

5. Microbial life at high pressures. Sci;Bartlett D. H.;Prog.,1994

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3