Novel Immunocompetent Murine Tumor Model for Evaluation of Conditionally Replication-Competent (Oncolytic) Murine Adenoviral Vectors

Author:

Robinson Michael1,Li Betty1,Ge Ying1,Ko Derek1,Yendluri Satya1,Harding Thomas1,VanRoey Melinda1,Spindler Katherine R.2,Jooss Karin1

Affiliation:

1. Cell Genesys, Inc., 500 Forbes Blvd., South San Francisco, California 94080

2. Department of Microbiology & Immunology, University of Michigan Medical School, 1150 W. Medical Center Dr., 6724 Medical Science II, Ann Arbor, Michigan 48109-5620

Abstract

ABSTRACT Oncolytic adenoviral vectors that express immunostimulatory transgenes are currently being evaluated in clinic. Preclinical testing of these vectors has thus far been limited to immunodeficient xenograft tumor models since human adenoviruses do not replicate effectively in murine tumor cells. The effect of the immunostimulatory transgene on overall virus potency can therefore not be readily assessed in these models. Here, a model is described that allows the effective testing of mouse armed oncolytic adenovirus (MAV) vectors in immunocompetent syngeneic tumor models. These studies demonstrate that the MAV vectors have a high level of cytotoxicity in a wide range of murine tumor cells. The murine oncolytic viruses were successfully armed with murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) by a novel method which resulted in vectors with a high level of tumor-specific transgene expression. The mGM-CSF-armed MAV vectors showed an improved level of antitumor potency and induced a systemic antitumor immune response that was greater than that induced by unarmed parental vectors in immunocompetent syngeneic tumor models. Thus, the oncolytic MAV-1 system described here provides a murine homolog model for the testing of murine armed oncolytic adenovirus vectors in immunocompetent animals. The model allows evaluation of the impact of virus replication and the host immune response on overall virus potency and enables the generation of translational data that will be important for guiding the clinical development of these viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3