Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus

Author:

Kaatz G W1,Seo S M1,Ruble C A1

Affiliation:

1. Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201.

Abstract

Transport processes are used by all organisms to obtain essential nutrients and to expel wastes and other potentially harmful substances from cells. Such processes are important means by which resistance to selected antimicrobial agents in bacteria is achieved. The recently described Staphylococcus aureus norA gene encodes a membrane-associated protein that mediates active efflux of fluoroquinolones from cells. SA-1199B is a fluoroquinolone-resistant strain of S. aureus from which we cloned an allele of norA (norA1199). Similar to that of norA, the protein product of norA1199 preferentially mediates efflux of hydrophilic fluoroquinolones in both S. aureus and an Escherichia coli host, a process driven by the proton motive force. Determination of the nucleotide sequence of norA1199 revealed an encoded 388-amino-acid hydrophobic polypeptide 95% homologous with the norA-encoded protein. Significant homology with other proteins involved in transport processes also exists, but especially with tetracycline efflux proteins and with the Bacillus subtilis Bmr protein that mediates active efflux of structurally unrelated compounds, including fluoroquinolones. In S. aureus, the norA1199-encoded protein also appears to function as a multidrug efflux transporter. Southern hybridization studies indicated that norA1199 (or an allele of it) is a naturally occurring S. aureus gene and that related sequences are present in the S. epidermidis genome. The nucleotide sequence of the wild-type allele of norA1199, cloned from the fluoroquinolone-susceptible parent strain of SA-1199B, did not differ from that of norA1199 throughout the coding region. Northern (RNA) and Southern hybridization studies showed that increased transcription, and not gene amplification, of norA1199 is the basis for fluoroquinolone resistance in SA-1199B.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3