Helicobacter pylori cheV1 mutants recover semisolid agar migration due to loss of a previously uncharacterized Type IV filament membrane alignment complex homolog

Author:

Sagoo Jashwin1ORCID,Abedrabbo Samar1,Liu Xiaolin1ORCID,Ottemann Karen M.1ORCID

Affiliation:

1. Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA

Abstract

ABSTRACT The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori . This bacterium builds chemoreceptor–CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆ cheW mutants exhibit total migration failure, whereas ∆ cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆ cheV1::cat mutants develop a stable, enhanced migration capability, termed “migration-able” (Mig + ). Whole-genome sequencing analysis of four distinct ∆ cheV1::cat Mig + strains identified single-nucleotide polymorphisms (SNPs ) in hpg27_252 (hp0273 ) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252 -encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆ cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori , a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants’ behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

China Scholarship Council

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3