Affiliation:
1. Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201
2. Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan 48201
Abstract
ABSTRACT
Previous studies have demonstrated that animals exposed to
Streptococcus pneumoniae
while recovering from influenza A virus infection exhibit exacerbated disease symptoms. However, many of the current animal models exploring dual viral and bacterial synergistic exacerbations of respiratory disease have utilized mouse-adapted influenza virus and strains of
Streptococcus pneumoniae
that in themselves are highly lethal to mice. Here we describe a mouse model of bacterial superinfection in which a mild, self-limiting influenza virus infection is followed by mild, self-limiting superinfection with
S. pneumoniae
serotype 3.
S. pneumoniae
superinfection results in rapid dissemination of the bacterium from the respiratory tract and systemic spread to all major organs of the mice, resulting in fatal septicemia. This phenomenon in mice was observed in superinfected animals undergoing an active viral infection as well as in mice that had completely cleared the virus 7 to 8 days prior to superinfection. Neutrophils were the predominant cellular inflammatory infiltrate in the lungs of superinfected mice compared to singly infected animals. Among other cytokines and chemokines, the neutrophil activator granulocyte colony-stimulating factor (G-CSF) was found to be significantly overexpressed in the spleens, lungs, and brains of superinfected animals. High G-CSF protein levels were observed in sera and lung lavage fluid from superinfected animals, suggesting that G-CSF is a major contributor to synergistic exacerbation of disease leading to fatal septicemia.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献